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On the basis of the Hankel and Mehler-Fock integral transforms we consider 

some types of dual integral equations and the corresponding types of integral 
equations of the second kind which occur in the study of a series of mixed prob- 

lems of the mechanics of continuous media. By generalizing the asymptotic me- 
thods of [l, 21, effective approximate solutions are obtained. As an example 

we investigate the torsion, induced by a punch, of a truncated sphere, fixed 
along the spherical boundary. 

1. PrObleInB rrrocirted wfth the Hankel transform. We consider 
the dual integral equation 

co 

5 
T (r) J, W L @Y) d I’ = f (4 (0 < 7. < 1) 

0 

m 

’ s T (r) J, (v) rdy = 0 (r > 1) (1.1). 
0 

Here 0 < k < 6% is a dimensionless parameter, J, (x) are the Bessel functions, the 
continuous function L (u) > 0 for u > 0 is such that 

L(u)= Bu (1 + O(u")) (u + 0, B= const) (1.2) 

L(U) zz 1 - i c@ + 0 (u-“(m+l)) (u + x) 
i=l 

Let n = 1. We m_ultiply the first relation of (1.1) by (t2 - F2)-‘/, and we integrate 
with respect to r from zero to I and we multiply the second relation by (? - t2)-1,‘z 
and we integrate with respect to r from t to infinity. Interchanging the order of inte- 
gration, making use of the integrals 

t 

s ~~ (v) dr 1 - cos yt 

ovfl--r‘= 
’ JI (v) dr _ 

It ’ s sin rt 

1 vr” Tt 

(1.3) 

and differentiating then the first equation with respect to t, we obtain 

q(t)== ~T(7)II--L(hY)l sin 7t dy = g’ (t) (O,<r<l) (1.4) 

0 
v(t) = 0 (t > 1) 

q(t) = 1 T(r)sinrtdy 

0 

(1.5) 

465 



466 V.M.Aleksandrov and M.I.Chebakov 

With regard to the second equality of(1.4) 

CP (t) sin TT dt 

0 

(1.6) 

Substituting (1.6) into the first equality of (1.4), we arrive at the integral equation of 
the second kind with respect to cp (t) 

q(t)=fip(r)dri ,1-_((hy)]sinrtsinr7dy+g’(t) 

I? 
(O<tdf) 

0 

Assuming that q (t) and g’ (t) are odd functions, we obtain the equation 

‘P(t) _- & i r~(‘):ll(!F)dr+g’(t) (it~<fi) 

-1 

nfcy) = j: [I -L(u)] cosuydu 

0 

Relations (l-8), (1.9) can be written also in the form 

1 
. 

% 
cp(t)K (y dT = nhg’(t) 

J 
(Itl<l) 

-1 

K(y) = i L(u) cos uy du 

0 

In specific problems we frequently make use of the quantity 
m 

-c(r) = I; 1’ t-i’) J 1 (?‘r) 7 dy 
0 

which can be expressed in terms of CP (t) as follows : 

(1.7) 

(1.8) 

(1.1)) 

(1.10) 

(1.j I) 

(1.12) 

(1.13) 

For the case n = 0 we can arrive in a similar manner to the equations (1.8), (1.9) 
or (l.lO), (1.11). Here we take into account that the functions cp (t) and g’ (t) mUSt 

be extended into the domain -1 < t < 0 in an even form and 

For n > 2 Eq. (1.1) can also be reduced [3] to an equation of type (1.Q (1.9). 
1. We assume that the parameter A is large and the variable y in (1.9) is small and 

we can obtain the expansion 

(1.15) 
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Substituting (1.15) into (1.8) and seeking the solution in the form 

‘P(t) = $j ‘P&)h-” 
k=O 

(1.16) 

we obtain for ‘pk (t) the following recursion relation: ‘p. (t) = g’ (t) 

‘pI; (t) = f ‘~ bk_i-1 ~ ‘pi (.t) 1 t - t Ik-i” dz (1.17) 
i=o -1 

2. We give another method of solution of (1.8) in the case of sufficiently large A. For 

this we expand the kemelikf (y) in a double series in Legendre polynomials 

M(F) = i 5 Cij(h)Pi(T)Pj(t) 

i=o j=o 

c nm = (- l)ntm@z -t 1) (2m + 1) p j [1 - L (u)] x 

x J’l,+n 
( ) 

lu @du + Jvz+m \ h ) u (1.18) 

Substituting (1.18) into (1.8) and, in the case of an even function g’ (t) , seeking the 

solution in the form 
q(t) = -j skP21( (t) (1.19) 

k=a 

we obtain with respect to the unknown coefficients Sk the following infinite SyStem: 

&=-$ 
skc2i, 2k (a) (4k f 1)-l + Gi (i = 0, 1,. . .) (1.20) 

kc0 

Here G, are the coefficients of the expansion of the function g’ (t) in a series of the 

form (1.19). In a similar way, an infinite system in the case of an odd function g’ (t). 

can be obtained. 
3. Assume that the parameter h is small. We approximate the function L (U) with 

the properties (1.2) by the expression 

L* (u) = &i$# (1.21) 

where Q1 (u) and Q2 (u) are even polynomials of the same degree. We consider in de- 
tail the simplest case when Qr = Qz = 1. In the case g’ (t) z I we obtain the approx- 
imate solution of Eqs. (1.10). (1.11) from the formula 

v(t) = limq,(t, s) 
i ) 

zay (1.22) 

where the function qE (t, S) is obtained from the integral equation 
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We will seek the principal terms of the asymptotics for small h of the solution of Eq. 
(1.23) in the form 

q: (t, s) = yco (T) 0 ( +) v-1 (+) (1.24) 

where o (r) and u (r) are the solutions of the equations 
m 

m ’ 
s 

0 (7) ah 
c 

vwe-i(i-r)u&, = 2n 
(wt<~) (1.25) 

83 
2, l/u”+1 

02 

s v (z) oh 
“: 1/w 

I _-oo m 
e--i (t-r) u du = 2n (ltl<m) (1.26) 

--m 

Omitting the computations, we give the result 

(1) (t) = -!- 
1/z 

-+)I,(+) + (1.27) 

+if=P (-+T)I,(+-.)dr], u(t)= $ 
0 

Here 1, (x) is the modified Bessel function. Now according to (1.22) and (1.24) we 
obtain 

‘PO V) = 40 V7 ‘1) q,(t,s)=pF(*)F(+) (1.28) 

F (x) =m= 0 (-'i,, 1; -.x) 

where CD (a, fi; x) is the confluent hypergeometric function. Substituting (1.28) into 
Eqs. (l.lo), (1.21) for g’ (t) _= 1, Q1 = Qz 3 1 and passing to the limit for h - 0, 
we obtain that p = 3t / &Now, from the formulas (1.28) we obtain 

‘I’” (I) = PL$(l + O(k)) (1.29) 

The same formulas can be obtained by making use of the results of [4]. This confirms 
once again that the relation (1.28) gives the principal term of the asymptotics of the 

solution for small A. 
4. If, as before, we seek the principal term of the asymptotics by the formulas (1.22) 

(1.24), while the functions 0 (t) and v (t) are determined from the equations 
co m 

3 s o (T) dz ,-i (I-r) u & = 2ne-Lf Pdt<=) 
0 

co -- e-i (I-+) u du = 2ne-cf otl<c-) (1.30) 

then we obtain formulas (1.28). Indeed, 

vm o @) = I/?l&(i -E) 
(&,(t, e)+Z(t, E)), V(t)= 'lee' e-E' 
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t 

I (t, e) = S 
p’ 

o v/t erf v/(1 - e) T dt (1.31) 

Here erf z is the probability integral. In the derivation of the formulas (1.31) we have 
made use of the following relations (*) 

1 u 1 = - [l/u]+ [ I/i]- 

(1.32) 

-&i_ ,E&E) [I/u]+ = 

- J4-(1 - &)_I” 1 (t, e) (120) 

0 (l< 0) 

5. If the right-hand side of Eq. (1.10) is not a constant, then for small h the asymp- 

totic solution can be obtained from Krein’s formula [5] by making use of (1.28). 

Let g’ (t) = At, A = const. Then 
1 

'PO@) = - +_g ' 

s 

qop Q 
( f qok E) dr) G 

, , Qo (47 4) _E 

Making use of the integral 

i qo(r, E)dt=+ (E+c) 
4 

and simplifying (1.33) asymptotically, we obtain 

‘PO(t) = A [F ($)I -l (t + ;) + g (1 - t2pu + 0 04 

If g’ (t) = At2, A = const, then in a similar manner we can obtain 

‘PO (0) = 

(1.33) 

(1.34) 

(1.35) 

(1.36) 

6. We give some computational results which allow to establish the given scheme 
for obtaining the approximate solution will ensure the complete and efficient investig- 

ation of one or another problem for all values of the parameter il. 
For the sake of simplicity we consider the case when g’ (t) 3 i and L (u) = u 

(U2 + I)-‘/*.Then the constants cl in (1.2) and bi in (1.15) have the form 

(1.37) 

b -- 
n 

2nt1 - [(al)!! 1” (4ll + 4) 
According to (1.17) for large h we obtain 

(1.38) 

l ) The formulas (1.32) are taken from the Iu. I. Cherskii doctoral dissertation, Tbilisi, 

1962. 
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‘PO (0 = 1, ‘PI (t) = 2 / a-c; ‘pz 0) = r11t2 + % 
(P3 0) = q3t2 + rl4, 'Pa PI = r1E.t4 + w2 + 97 (1.39) 

(Ps (6 = rld4 + W2 + rll0 

ql = - 0.2500 Q = - O.OO4987 Ils = 0.001989 
‘Ir = 0.1553 96 = O.OO2520 qn = - 0.02945 

rta= 0.05305 q7 = 0.005968 VI0 = O.OOO9780 
q4 = - 0.04261 

The first three coefficients (1.18) have the form 

coo = 2 jj (2 / ?p 
k=O [(2k + l)!!l* G’k + 2) (1.40) 

Co2 = c20 
(2 / Q2’ [30 - 15 (2k + 4) + 2.5 (2k + 3) (2k + 4)] _ 

k=o 
[(2k+i)!!]z(2k+2)(2k+3)(2k+4) 

_ ~ 5 (1 / Q2”-l [30 - 15 (2k + 3) + 2.5 (2k $2) (2k -b 3)] 

k=l 
(k!)a (2k + 1) (2k + 2) (2k + 3) 

We solve system (1.13) by the method of reduction, setting i $ k < 1. We have, res- 

pectively h = 0.4 $6 0.8 1.0 1.2 1.4 
So = 2.80 i2.18 1.81 1.69 1.57 1.48 (1.41) 

- s1 = 0.514 (0.293 0.187 0.129 0.0937 0.0712 

In Table 1 the values of 1 

cpm 'p(l)7 P= 
s 
' 'P(t)dt (1.42) 

-1 

are given, compute-d with the formulas (1.39) (lines 2 - 4). with the formulas (1.19), 
(1.41) (lines 5 - 7) and with the formulas (1.28), (1.34) (lines 8 - 10). 

2. Probl@m# r#tocirted with thr Mehler-Fock transform. Wecon- 
sider the dual integral equations 

00 

s T (7) pnyz+iy (ch r) L (7) dy = f (r) (0 < 7. < 2) (2.1) 
0 

cc 

1' 
T (y) P:t,2+iy (ch r) 7 th nyd~ = 0 (r > 2) 

0 
where 0 < a < 00 is a dimensionless parameter, P”li, -!I- i?’ are the associated conical 

functions, the continuous function L (y) > 0 for y > 0 is such that 

L (Y) = BY’ (1 + 0 (y2)) (r-0, B=con’st) (2.2) 

L (Y) = 1 + 0 (y2) 0-m) 
The dual integral equations (2.1) can be reduced to the integral equation of the second 

kind [3] 
‘p(z)= f 1 cP(t)M(t--)dt+P@) (1% <N 

--c1 

M(y) = j?l- L(r))coswdr 
0 

The relations (2.3) can also be written in the form 

(2.3) 
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a 

s cp (t) K (t - z) dt = np (z) ( I 2 I d 4 
--a 

K(y)= yL(7)cosrHr 
0 

Here for the case n = 1 
T (7) = 1 cp (t) cos 7tdt 

0 

v/2sh x * 
p(x)=cch++ n 1 

f (z)dz 

o I/chs-chz 

(2.4) 

(2.5) 

(2.6; 

In the sequel the quantity 

q(r) = 1 T (7)7 th 3.~7 P:l,p+i-t (ch+7 
0 

(2.7) 

will be necessarv which, bv taking into account (2.6) can be given the form [3] 

$ (r) = - + 1 ‘P’ (‘6) [2 (cht - chr)]+dt (0 d r Q 4 (2.8) 
P 

Here we consider cp (a) = 0 which corresponds to the condition of integrability of 
9 (r) on [O, al and serves as a condition for the determination of the constant c in 

(2.6). 
We note that the dual integral equations 

cm 

s 7T(7) P%+iy (chr)L (7)d7 = f(r) to< r <a) 
0 

m 

s T (7) th n7 PYllp+iy (ch T+) d7 = 0 P > a) (2.9) 
0 

can also be reduced to an equation of type (2.3) p]. 
The approximate solution of the equations (2.4), (2.5) can be constructed by approx- 

imating the function L (y) in accordance with (2.2) by the expression 

(2.10) 

where P, (y) and P, (y) are even polynomials of the same degree. Further, we examine 
in detail the case (a) P, = P, = 1 and touch upon the case 

b) P, (y) = y2 + E2, P, (y) = y2 + G2. 

The solution of the integral equations (2.4) (2.5) (2.10) can be obtained in the closed 
form [Z]. Taking into account Krein’s formulas [S] we give, omitting the computations, 
the solution of the equation 

s 

J b q(t,s)K(t.-ST)&= n (I 2 1 -< s < 2) (2.11 ) 
s 

For the case (a) we have 
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q (t, s) = ‘I2 D2s2 + Ds + 1 - II2 D2t2 (2.12) 

For the case (b) the solution is considerably more complicated 

q (t, s) = m - nlt2 + 2 [e--E@+*) + e-E(s-f)] 

m = [Qs2 + (D*s + Cb3 + e-2Es(Oqs2 + Ofis + CD,)] [E, + E2e-2ES]-1 (2.13) 

n = D2G22-1E-2 = (24)-l, 1 = (F, + F,s) (E, + E2e-2ES)-1 
El = E(D - G)D-lG-l (E - D)-l (G - E)-' 
E, = E (D - G)D-'G-l(D + E)-l(G + E)-l 
ml = DG(G - D)2-'E-l(D - E)-l(G - II)-' 

CD, = ID2 (G - E)] - G2 (D - E)]E-2 (D - E)-'(G - I?)-' 
OS = [OS (G - E) - G3 (D - ,?3)[E-2G-1D-'(D - E)-l(G - E)-l 

@)a = DG(D - G) 2-lE-' (D + E)-’ (G + E)-l 
(I+, = [D2(G + E) - G2 (D + E)lE-2(D + E)-l(G + E)-l 

OS = ID3 (G + E) - G3 (D + E)]E-2G-1D-'(D - E)-l (G - E)-' 
F, = (G2 - D2)E-2D-1G-1, Fz = (G - D)E-2 

Assuming that the function p (2) is even and p (x) = pr’ (a$, we obtain for the case 

(a) from Krein’s formula [S] and using (2.12) the following approximate solution of the 
integral equation (2.4). (2.5): 

~(N=P(~)+DP’@)+D’{ Pr(t)dt (2.14) 
PI 

We note that if we make use of the method of construction of the principal term of 
the asymptotics for small A = s-r,given in Sect. 1, Subsection 3, then for Eq, (2.11) 
in the case (a) we have 

q (t, s) = ‘I2 D2s' + Ds + V2 --I2 D2t2 (2.15) 

which coincides exactly with (2.12). For the approximate solution of the equations (2.4) 
(2.5) (2.2) we can make use of the algorithms of Sect. 1 (see Subsections 1 and 2). 

3. The tor,ion of 8 truncated nph@re by L punoh, Thisproblemhas 
been considered earlier in [3, 61, where it has been reduced to dual integral equations 
of the type (2.1). and then to an equation of the second kind of type (2.3), where 

L (r) = th n’r th fir (0 d B d n) 
a = 2 Arth (b ! a), fi = arcsin (a ! R) (3.1) 

p (5) = c ch I / 2 + H (ch z / 2)-t, 

H--2 1/2a.Vt-’ 

Here 0 is a parameter which characterizes the degree of the truncation of the sphere, 
a is the radius of the cut, R is the radius of the sphere, b is the radius of the punch, 
and e is the rotation angle of the punch. 

Obviously, I, (y) of the form (3.1) satisfies properties (2.2) for H = ny. The contact 
shearing stresses are obtained from the formula [3] 

r (r) = - Ga-1 (1 + ch r)‘/‘$ (r), r = 2 Arth (pa-r) (3.2) 

where the function $ (r) is given by (2.8) and p is the distance to the axis of symmetry. 
As an approximate solution of the equation (2.3), (3.1) we take (2.14) where 



Mixed problems of the mechanics of continuous media 473 

D- (?@~ 
Pr (4 = 2c sh (3 / 2) + 2% am@ (d (5 f 2)) (3.3) 

We note that the accuracy of the approximation (2. IO) for the simplest case (PI = 
Pa E 1) and for n I 4 d B ( n does not exceed 15%. 

Now from the formulas (2.8) and (3.2) we find the approximate representation fort (r) 

r (r) = a-‘G sh r (i + ch r)” [-++2D”)((f+chr)_1+ 

+ lI/cha 

VW+ vi$iCX-r 

-cbr [2 I/(cha -chr)(i+cha)+2chu-chr+i 1 
+ 

_tHJ&P 
( 

arc tg (sh l/a a) I/ch a 

shu vcha-chr + v/z (i + ch ,-v:h + 1 - 

(3.4) 
1 

- 4 if,h are eos 
4tf - ch r) + (3 - ch F) fcb cz - 1) 

(1 + ch r) (ch a - 1) t- 

ch x arc tg (sh r/s z) dx 

f shax I/chs-cch; )I 
where the constant c, obtained from the condition cp (a) = 0, has the form 

c==--li 
(ch rls a)+ + 213 arc tg (sh $I a) 

ch r/a a + 20 sh r/a a (3.5) 

For the derivation of the formula (3.4) we have made use of the values of the follow- 
ing integrals: 

2 d(ch u -chr)(i+chu)+2cha-chr+i (a>r) 
l+chr 

(I 

c 
ah ‘/a x dr 2 1/r vcha-chr 

cchaI/az )/chx-chr = (i-j-chr) )/1+cha (“” 
f (36) 

a. 

s dx fl vcha-chr + 

rahzchr/ss )/ohx-chr I- (1+chr) ?F 

+ f 2 ~z.iXarccos 
4 (1 - ch r) + (3 - ch r) (ch a - i) 

(1 + ch r) (ch a - 1) (a > r) 

In Table 2 we give the values of the quantiSy z (r} (GE)“, obtained from the formula 
(3.4). In the second line of the Table we give for comparison the exact data in the 

problem of the torsion of an elastic semispace by a punch. 
Then the values of the quantity c (a~)-r are obtained for fJ = n by the formula (3.5) 

(second row) with the use of the more exact approximation (2.10) (third row) 

b/a = 0.1 0.3 0.5 0.7 0.9 

e (ae)’ = 0.990 0.919 0.736 0 597 0.318 

e (a@-’ = 1.01 0.949 0.825 0.618 0.319 

hr(2.lO)for #I= atweset 

D = 0.424, P, h! = 9 + (0.75Yl Pz (Y) = v2 + (0.56Ja 
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The error of such an approximation does not exceed 1.5%. Because of its awkwardness 
we do not give the analytic expression for e (ae )- i which has been used for the given 
approximations. 

In conclusion we note that in a similar manner we can investigate analytically and 
numerically the problem of the indentation of an annular punch into an elastic semisp- 

ace and the problem of an annular crack in an elastic space. 

A I 0.4 
cy(O) - 
9$’ - 

$2 336 2.29 
20, 3.06 5.60 

?$i’ 5.50 2.08 

0.6 I 0.8 

2.35 1.97 
1.53 1.60 
4.16 3.70 
2.33 1.96 
1.89 1.68 
4.36 3.74 
2.26 1.87 
1.75 1.55 
4.19 3.53 

0.i I 0.3 

0.128 0.400 

0.133 0.132 x*z 
0.139 0:432 
0.149 0.465 
0.164 0.512 

:*:z 0.404 

01147 :-z 
0.165 0:513 
0.192 0.597 

- 

- 

T - 

I.0 

1.76 1.62 1.52 
1.53 1.46 1.41 
3.36 3.13 2.96 
1.75 1.62 1.52 
1.56 1.47 1.41 
3.37 3.14 2.97 
1.6’1 1.49 1.39 
1.42 1.33 1.27 
3.14 2.88 2.69 

0.5 

0.735 
0.742 

:*;z 
01857 
0.959 

0.743 
0.768 
0.832 
0.944 
1.13 

- 

- 

- 

1.2 

_ Table 1 

1.4 

Table 2 

0.7 
I 

0.9 

1.25 2.63 
1.25 2.65 
1.28 2.68 
:*z 

I:69 

3.07 2.80 

3.88 

1.26 2.66 
1.30 2.71 
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